The Thiol:Disulfide Oxidoreductase DsbB Mediates the Oxidizing Effects of the Toxic Metalloid Tellurite (TeO3
نویسندگان
چکیده
منابع مشابه
C-di-GMP regulates Pseudomonas aeruginosa stress response to tellurite during both planktonic and biofilm modes of growth
Stress response plays an important role on microbial adaptation under hostile environmental conditions. It is generally unclear how the signaling transduction pathway mediates a stress response in planktonic and biofilm modes of microbial communities simultaneously. Here, we showed that metalloid tellurite (TeO3(2-)) exposure induced the intracellular content of the secondary messenger cyclic d...
متن کاملTellurite-mediated thiol oxidation in Escherichia coli.
The oxyanion of tellurium, tellurite (TeO3(2-)), is toxic to most micro-organisms, particularly gram-negative bacteria. The mechanism of tellurite toxicity is presently unknown. Many heavy metals and oxyanions, including tellurite, interact with reduced thiols (RSH). To determine if tellurite interaction with RSH groups is involved in the toxicity mechanism, the RSH content of Escherichia coli ...
متن کاملTellurite susceptibility and non-plasmid-mediated resistance in Escherichia coli.
Tellurite (TeO3(2-)) is highly toxic toward Escherichia coli (MIC, approximately 1 microgram ml-1). Mutants (Tel) that were resistant to low levels of TeO3(2-) (MIC, approximately 10 micrograms ml-1) and collaterally resistant to arsenate were isolated. These Tel mutants were unable to grow on media containing low levels of Pi, which supported growth of the parent strain. When grown at much hig...
متن کاملMutants in DsbB that appear to redirect oxidation through the disulfide isomerization pathway.
Disulfide bond formation occurs in secreted proteins in Escherichia coli when the disulfide oxidoreductase DsbA, a soluble periplasmic protein, nonspecifically transfers a disulfide to a substrate protein. The catalytic disulfide of DsbA is regenerated by the inner-membrane protein DsbB. To help identify the specificity determinants in DsbB and to understand the nature of the kinetic barrier pr...
متن کاملAccumulation of heme biosynthetic intermediates contributes to the antibacterial action of the metalloid tellurite
The metalloid tellurite is highly toxic to microorganisms. Several mechanisms of action have been proposed, including thiol depletion and generation of hydrogen peroxide and superoxide, but none of them can fully explain its toxicity. Here we use a combination of directed evolution and chemical and biochemical approaches to demonstrate that tellurite inhibits heme biosynthesis, leading to the a...
متن کامل